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Vibration Analysis of Rotating Composite Cantilever Plates
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A modeling method for the vibration analysis of rotating composite cantilever plates is

presented in this paper. The coupling effects between inplane motions and the bending motion

are considered and explicit mass and stiffness matrices are derived for the modal analysis.

Numerical results are obtained and some of them are compared to those of a commercial
program to confirm the accuracy of the present method. Numerical results show that the
coupling effects become important only when laminates are stacked up unsymmetrically.

Incidentally, natural frequencies loci veering, loci crossing, and associated mode shape

variations are observed.
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1. Introduction
Composite materials, especially laminated
composite plates, have been widely used in vari-
ous kinds of engineering such as aeronautics,
astronautics, and marine structures. In addition to
the advantages of high strength (as well as high
stiffness) and light weight, another advantage of
laminated composite plate is the controllability of
the structural properties through changing the
fiber orientation angles and the number of plies
and selecting proper composite materials, over a
wide range.

As the importance of high strength and light
weight rises, the study on vibration of composite
structures has been actively progressed in the
1980s. Flexible structures having slender shapes
are often idealized as beams since reliable and
robust theories for beams, which can provide
accurate numerical results in most cases, are av-
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ailable. Many structures, however, have plate-like
shapes (rather than beam-like shapes). Solar
panels of satellites, turbine blades, and aircraft
rotary wings with small aspect ratios are such
examples. These structures can be analyzed more
accurately by modeling them as plates rather than
beams. Recently, many research works for
rotating cantilever plate have been made
{Dokanish, 1971; Ramamurti, 1984). These works
employed finite element techniques and strain
energy expressions which were obtained from
equilibrium conditions between the centrifugal
inertia forces and the steady-state in-
plane stress components. On the basis of this
approach, the modal characteristics of rotating
plates could be estimated by calculating explicit
stiffness matrices. This approach, however,
involves with unnecessary assumptions and com-
plexities which result in two-step procedure to
derive the equations of motion for rotating plates.
Due to the complexities, this approach is ex-
tremely difficult to be applied to practical
problems. Recently, a new modeling method,
which employs a hybrid set of deformation
variables, was introduced (Yoo, 2001). This
modeling method is as efficient as the above
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method but much simpler than the previous
method in deriving the equations of motion and
performing the numerical analysis. This modeling
method, however, was applied to only isotropic
plates rather than composite plates so far.

The purpose of this paper is to investigate the
variations of modal characteristics of the rotating
composite plate. The equations of motion are
derived and transformed
forms. Dimensionless parameters are identified
and the effects of angular speed and the fiber
orientation angle on the modal characteristics are

into dimensionless

investigated. Especially, the importance of the
coupling effects between inplane and bending
motion is clarified. Incidentally, natural frequen-
cy loci veering, loci crossing, and associated mode
shape variations are exhibited and discussed.

2. Formulation for Vibration Analysis

2.1 Stain energy of composite cantilever
plates

Figure | shows that a rotating rectangular plate
which is characterized by natural length 2, width
b and thickness £ is attached to a rigid hub which
rotates with a constant angular speed Q. The
laminated plate geometry and ply numbering sys-
tem is shown in Fig. 2 and the coordinates and
fiber direction of Ath-layer. cross-ply laminated
composite plate are shown in Fig. 3. As shown in
Fig. 2, the plies are numbered from bottom to top.

In the present work, two in-plane variables
along with the lateral displacement variable are
approximated to obtain the ordinary differential
equations of motion. By using the Rayleigh-Ritz
method, the approximations are given as follows:
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where @1;, @2, and @s; are spatial mode functions.
Any compact set of admissible functions, which
satisfy the geometric boundary conditions of the
plate can be used as the mode functions. g;’s are
generalized coordinates and g is the total number
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Fig. 3 Fiber direction. of kth-layer cross-ply

laminated composite plate

of the generalized co-ordinates. The transverse
shear deformation is ignored to simplify the
formulation employed in this work.- The shear
effect becomes important when the plate has a
dimension with large thickness. Including the
shear effect is not a major problem. Nonetheless,
since it is not the major issue here, it is ignored in
this work. Then, the elastic strain energy of a
composite plate can be expressed as follows
(Whitney, 1987):
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where matrices Ay, By, and Dy can be obtained
by integrating material properties of each layer
shown in Fig. 2 as follows:
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where Q4 are the off-axis stiffnesses of kth layer

(Whitney, 1987), 2z and Z.-; are the distance

from the mid-plane to the top and bottom surface
of the kth layer, and N is the total number of
laminated layers.

22 Modal formulation

Using Eq. (4), equations of motion for the
composite plate can be obtained. It is useful to
rewrite these equations in a dimensionless form.
For the purpose, the following dimensionless
variables, Aparameter, and functions are
introduced.
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where p is the mass per unit area of the composite
plate. 2, and T are given as

Dll
pa4 y T - Qr (9)

Using these dimensionless
parameters, the following linear dimensionless

Q=

variables and

equations of motion for composite plate can be
derived eventually.
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where a comma denotes partial differentiation
with respect to subscripts that follow. If mis 1, I”
represents & and if m is 2, I represents 7.

C42,222 C12,111
— K2 gaz.
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Using Eqgs. (10), (11), and (12), the matrix
form of the equations of motion can be derived as

follows:
Ma+Cq+Kq=0 (19)
where
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where K is the symmetric matrix whose respective
element matrices Ky are defined as
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In order to use a complex modal analysis
method, Eq.-(19) is transformed into the follow-
ing form.

M*7n+K*p=0 (23)
where
B
k=[5 0] (25)
7={ g} (26)

An eigenvalue problem can be derived by
assuming that 7 is 2 harmonic matrix function of
T expressed as

7=e" 0 (27)

where A is the complex eigenvalue and 6 is the

Table 1 Material properties of the composite plate

Material | Ei(Gpa) | E2(Gpa) | Gi2(Gpa) Lz
T300/5208 181 10.3 7.17 0.28
Table 2 Comparison of natural frequencies

obtained by ANSYS and the present
modeling
Mode Present ANSYS Error{%)

1 1.0479 1.0422 0.55

2 1.9816 1.9567 1.27

3 4.6503 4.5453 2.3t

4 6.6018 6.5249 118

5 8.0411 7.8710 2.16

6 10.0365 9.7834 2.58

complex mode shape. Substituting Eq. (27) into
Eq. (23) yields

AM*O+K*O=0 (28)
3. Numerical Results

In this section, the numerical results are
obtained by using the modal equations which are
introduced in chapter 2. To solve the eigenvalue
problem for the rotating composite plates, as-
sumed mode functions are employed. In -the
present work, five cantilever beam functions and
seven free-free beam functions which inciude two
rigid body mode functions are employed to con-
struct 35 plate mode functions. The number of
mode functions are presumably sufficient to in-
sure adequate convergence for the lowest six
eigensolutions. First of all, the numerical results
obtained by using the present modelihg method
are compared to those of ANSYS for a non-
rotating composite plate. In the computation, the
plate is made up of eight laminates with the fiber
orientations[0, 45, —45, 90] s, and the composite
material is T300/5208. The mechanical properties
of the material are given in Table 1. It is shown in
Table 2 that the lowest six natural frequencies
obtained by the present modeling method agree
well with those of ANSYS.

Figure 4 shows the variations of the lowest six
dimensionless natural frequencies for rotating



324 Sung Kyun Kim and Hong Hee Yoo

o
g.,_
g .
e
I
° T » = >
Non-dimensional Angular Speeds

Fig. 4 Variation of the lowest six natural frequencies
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Fig. 5 Nodal line patterns of lowest six mode shapes
with and without rotating motion

plate with fiber orientations[0, 45, —45, 90]s.
The interesting phenomena observed from Fig. 4.
The fifth and sixth eigenvalue loci veer around
=T and the fourth and fifth eigenvalue loci
cross around @=9.

Figures 5(a) and 5(b) show the nodal lines of
the lowest six mode shapes when the
dimensionless angular speed is 0 and 20.
Comparing the mode shapes of rotating plate to
those of the non-rotating plate, the fourth, the

---=—No Cauping

(b) Fiber orientation[10, 20, 30, 40, 50, 60, 70, 80]

Fig. 6 Variation of the lowest six natural frequencies
for rotating plate with and without coupling
effect

fifth, and the sixth modes seem to be switched one
another. These mode shape variations result from
eigenvalue loci veering and crossing as shown in
Fig. 4. These phenomena are well explained by H.
H. Yoo (1993). Although laminates are
symmetrically stacked up with respect to neutral
axis, modal line patterns are found to be
unsymmetric. The reason for this comes from Dig
and Dy terms which represent the flexural-
torsional coupling effect in matrix Dy of Eq. (7).
This same phenomenon is also found by T.
Maeda, V. Baburaj, Y. Ito, and T. Koga (1998).
The flexural-torsional coupling effects, however
seem to disappear as the increase of angular speed
of the plate as shown in Fig. 5(b). This is because
the motion-induced stiffness variation terms K
and K%? become more dominant than the struc-
tural stiffness as the angular speed increases.
Figure 6(a) shows the variations of the lowest
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six dimensionless natural frequencies for rotating
plate with fiber orientations[0, 45, —45, 90]s.
The solid lines represent the results of considering
the extensional-bending coupling effects and the
dotted lines represent the results of ignoring the
coupling  effects. When
symmetrically stacked up with respect to neutral
axis as shown in Fig. 5(a), the results obtained by
considering coupling effects are almost identical
to those obtained by ignoring coupling effects. On
the other hand, Fig. 6(b) shows the variations of
the lowest six dimensionless natural frequencies

laminates are

for a rotating plate with unsymmetrical fiber
orientations{ 10, 20, 30, 40, 50, 60, 70, 80]. It
shows that the results obtained by considering the
coupling effects are significantly different from
those obtained by ignoring the coupling effects.
Therefore, are unsymmetrically
stacked up with respect to neutral axis, the
coupling effects the modal

if laminates

influence char-

Non-Dimensional Natural Frequencies
8 .
1

1T
B
T E 3 % % & % % »
Angle (deg)
(b) w=10

Fig. 7 Variation of the lowest six natural frequencies
due to fiber angle change

acteristics considerably. In this case, By which is
the coupling stiffness matrix from Eq. (4) is not
zero.

The variations of dimensionless natural fre-
quencies square plate for the fiber
orientations [0, 8, -4, 90]s are shown in Fig. 7.
The effect of the fiber angle 8 is shown in Fig. 7.
Figure 7(a) shows the dimensionless natural fre-

of a

quency variations without rotation and Fig. 7(b)
natural
variations with dimensionless angular speed w=
10. These figures indicate that the natural fre-
quencies of bending modes decrease as the fiber
angle increases. Those of the chordwise bending

shows the dimensionless frequency

modes, however, increase as the fiber angle
increases.

4. Conclusions

In this paper, a modeling method for the modal
analysis of rotating composite plates is presented.
Using the modeling method, the effects of angular
speed and the fiber angle orientation on the
modal  characteristics are  obtained. As
dimensionless angular speed and laminated angle
are varied, natural frequencies loci veering, loci
crossing, and associated mode shape variations
are observed. Especially, when laminates are
unsymmetrically stacked up with respect to neu-
tral axis, it is found that the accurate results can
be obtained by using equation of motions which
consider the coupling effects between extensional
motions and the bending motion. Finally, it is
concluded that various mode shape variations can
be observed by changing a laminate angles of
layers. The presenting modeling method can be
usefully employed for the design of rotating com-
posite plate structures.
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